Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[bis(4-aminopyridinium) [[diaquamanganese(II)]-di- μ-chlorido] dichloride]

Donia Zaouali Zgolli, Habib Boughzala* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092
Tunis, Tunisia
Correspondence e-mail: habib.boughzala@ipein.rnu.tn
Received 24 May 2009; accepted 8 July 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.002 \AA$; disorder in main residue; R factor $=0.036 ; w R$ factor $=0.095$; data-to-parameter ratio $=16.9$.

Single crystals of the title organic-inorganic hybrid, $\left\{\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}\right\}_{n}$, were synthesized from an ethanol solution containing manganese(II) chloride tetrahydrate and 4 -aminopyridine under acidic conditions. The asymmetric unit contains a disordered organic cation (occupancies in the ratio 0.72:0.28), a chloride anion and an $\mathrm{MnCl}\left(\mathrm{H}_{2} \mathrm{O}\right)$ moiety with the $\mathrm{Mn}^{\mathrm{II}}$ atom located on an inversion center. The structure is built up of infinite chains of edge-sharing $\left[\mathrm{MnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$] octahedra developing parallel to the a axis which are separated by the 4 -aminopyridinium ions and discrete chloride ions. The organic cations occupy the empty space around each inorganic chain. Structural cohesion is organized through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which build up a three-dimensional network.

Related literature

For general background to organic-inorganic hybride materials, see: Lacroix et al. (1994); Mitzi (2001); Calabrese et al. (1991); Hong et al. (1992). For related structures, see: Caputo et al. (1976); Hachuła et al. (2009); Zeng et al. (2008).

Experimental

Crystal data

```
\(\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2} \quad b=17.586\) (6) \(\AA\)
\(M_{r}=421.01\)
Monoclinic, \(P 2_{1} / c\)
\(a=3.946\) (1) А
\[
\begin{aligned}
& b=17.586(6) \AA \\
& c=12.845(4) \AA \\
& \beta=93.48(3) \AA \\
& V=889.7(5) \AA^{\circ}
\end{aligned}
\]
```


$Z=2$

Mo $K \alpha$ radiation
$\mu=1.35 \mathrm{~mm}^{-1}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.916, T_{\text {max }}=0.999$
2516 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.04$
1892 reflections
112 parameters
$T=298 \mathrm{~K}$
$0.05 \times 0.04 \times 0.02 \mathrm{~mm}$

1892 independent reflections 1473 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$
2 standard reflections frequency: 120 min intensity decay: 1%

43 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} W 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.87	2.27	$3.090(2)$	158
$\mathrm{O} 1-\mathrm{H} W 2 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.73	2.39	$3.082(2)$	159
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.86	2.41	$3.264(4)$	172
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2$	0.86	2.57	$3.415(4)$	169
$\mathrm{~N} 1^{\prime}-\mathrm{H} 1^{\prime} 1 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.86	2.47	$3.299(10)$	163
$\mathrm{~N} 1^{\prime}-\mathrm{H}^{\prime} 2 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.58	$3.386(9)$	156
Symmetry codes:	(i)	$-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$	(ii) $-x, y+\frac{1}{2},-z+\frac{3}{2} ;$	(iii)
$x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.				

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2460).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Calabrese, J., Jones, N. L., Harlow, R. L., Herron, N., Thorn, D. L. \& Wang, Y. (1991). J. Am. Chem. Soc. 113, 2328-2330.

Caputo, R. E., Willett, R. D. \& Muir, J. A. (1976). Acta Cryst. B32, 2639-2642.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hachuła, B., Pędras, M., Pentak, D., Nowak, M., Kusz, J. \& Borek, J. (2009). Acta Cryst. C65, m215-m218.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hong, X., Ishihara, T. \& Nurmikko, A. V. (1992). Solid State Commun. 84, 657661.

Lacroix, P. G., Clément, R., Nakatani, K., Delaire, J. A., Zyss, J. \& Ledoux, I. (1994). Science, 263, 658-660.

Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
Mitzi, D. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1-12.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Zeng, J.-Z., Yi, X.-G., Lin, J.-Y., Ying, S.-M. \& Huang, G.-S. (2008). Acta Cryst. E64, m476.

supplementary materials

Acta Cryst. (2009). E65, m921 [doi:10.1107/S1600536809026804]
catena-Poly[bis(4-aminopyridinium) [[diaquamanganese(II)]-di- μ-chlorido] dichloride]

D. Zaouali Zgolli, H. Boughzala and A. Driss

Comment

Studies of organic-inorganic hybrid compounds continue to be a focus area in chemistry and material science because they combine properties of organic and inorganic compounds within one single molecular scale, such as second order nonlinear optical (NLO) response, magnetism, luminescence, and even multifunctional properties (Mitzi et al. (2001); Lacroix et al. (1994)).

This kind of materials, generally expressed as $\left(\mathrm{R}-\mathrm{NH}_{3}\right)_{2}-M X_{4}$ or $\left(\mathrm{NH}_{3}-\mathrm{R}-\mathrm{NH}_{3}\right) M X_{4}$ (where R : organic group, M : divalent metal and X : halogen) can be regarded as semiconductor/insulator multiple quantum well system consisting of metal halide semiconductor layers sandwiched between organic ammonium insulator layers (Calabrese et al. (1991); Hong et al. (1992). In this paper, we report the synthesis and single-crystal X-ray diffraction studies of the organic-inorganic hybrid compound: $\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} . \mathrm{Cl}_{2}$.

The assymetric unit is built up from $\operatorname{anCl}\left(\mathrm{H}_{2} \mathrm{O}\right)$ moiety, a fully disordered 4 -ammoniumpyridine and a Cl ion. The Mn atom is located on an inversion center and each managanese atom is octahedrally coordinated to four equatorial chlorine atoms and to two oxygen atoms in axial positions (Fig. 1).

The $\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} \cdot \mathrm{Cl}_{2}$ structure is built up of infinite edges sharing octahedra $\mathrm{MnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ chains running along the [100] direction. Similar arrangement of the inorganic part was reported for $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right] \mathrm{MnCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ published by Caputo et al. (1976). The organic-inorganic cohesion is ensured by hydrogen bonding that involves two kinds of interactions: $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl} 1$ and $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 2$ bonds between the organic cation and the chloride and $\mathrm{O}-\mathrm{HW} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{O}-\mathrm{HW} 2 \cdots \mathrm{Cl} 1$ between the water molecule and the Cl anion (Fig. 2, Table 1). It is worthy to note that the second kind of hydrogene bonds are stronger than the first one.

The $\left[\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right]^{+}$cations is disordered over two positions which are rotated with respect to each other by about 141°. Thus, the amine group of one component lies close to the carbon atom C 1 of the other component so that both components are more or less coplanar one to another (Fig. 3).

The distances and angles througout the structure are in good agreement with those encountered in several compounds of literature (Zeng et al. (2008); Hachuła et al. (2009)).

Experimental

An aqueous $\mathrm{HCl}(1 M)$ solution, 4-aminopyridine $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)$ and manganese dichloride tetrahydrate $\left(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$ in a 2:1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystal for X-Ray diffraction structural analysis were grown by slow evaporation at room temperature and then set aside for few days to obtain colourless crystals.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}$ $=0.86 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ or N$) . \mathrm{H}$ atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints $(\mathrm{O}-\mathrm{H}=0.82(1) \AA$ and $\mathrm{H} \cdots \cdot \mathrm{H}=1.39(2) \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. In the last stage of refinement, they were treated as as riding on the O atom.

The organic cation is disordered over two positions twisted to each other by about 141° around an axis perpendicular to their mean planes. The two components were refined using the tools available in SHELXL97(Sheldrick, 2008): PART, SAME and EADP. In the first step of refinement the occupancy factor for each domain has been determined to be in the ration $0.72 / 0.28$ by using the FREE variable option.

Figures

Fig. 1. Representation of the assymetric unit with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms ahve been omitted for clarity. [Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x,-y+1,-z+2$; (iii) $x+1, y, z$; (iv) $x-1, y, z]$

Fig. 2. Partial packing view showing the hydrogen bond interactions between the inorganic and organic molecules. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

catena-poly[bis(4-aminopyridinium) [[diaquamanganese(II)]-di- μ-chlorido] dichloride]

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$F_{000}=426$
$M_{r}=421.01$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=3.946(1) \AA$
$b=17.586$ (6) \AA
$D_{\mathrm{x}}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$

$c=12.845(4) \AA$	$T=298 \mathrm{~K}$
$\beta=93.48(3)^{\circ}$	Prism, colourless
$V=889.7(5) \AA^{3}$	$0.05 \times 0.04 \times 0.02 \mathrm{~mm}$
$Z=2$	

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.916, T_{\text {max }}=0.999$
2516 measured reflections
1892 independent reflections
1473 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.04$
1892 reflections
112 parameters
43 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0506 P)^{2}+0.1303 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.45$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Experimental. Refinement of $\mathrm{F}^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on $\mathrm{F}^{\wedge} 2^{\wedge}$, conventional R-factors R are based on F , with F set to zero for negative $\mathrm{F}^{\wedge} 2^{\wedge}$. The threshold expression of $\mathrm{F}^{\wedge} 2^{\wedge}>2 \operatorname{sigma}\left(\mathrm{~F}^{\wedge} 2^{\wedge}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $\mathrm{F}^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R -

supplementary materials

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Mn1	0.5000	0.5000	1.0000	$0.03113(15)$	
C11	$0.05805(18)$	$0.09651(5)$	$0.82588(5)$	$0.0535(2)$	
C12	$-0.01007(15)$	$0.40847(3)$	$0.95374(5)$	$0.03833(17)$	
O1	$0.4739(4)$	$0.54280(11)$	$0.84390(13)$	$0.0451(5)$	
HW1	0.6426	0.5601	0.8110	0.068^{*}	
HW2	0.3186	0.5559	0.8160	0.068^{*}	
N1	$0.2765(11)$	$0.2731(2)$	$0.7899(3)$	$0.0640(10)$	0.72
H1A	0.2411	0.2253	0.7984	0.077^{*}	0.72
H1B	0.2264	0.3050	0.8374	0.077^{*}	0.72
N2	$0.6831(9)$	$0.3534(2)$	$0.5246(3)$	$0.0569(9)$	0.72
C1	$0.4091(13)$	$0.2978(3)$	$0.7031(3)$	$0.0501(6)$	0.72
C2	$0.4949(15)$	$0.2487(3)$	$0.6239(4)$	$0.0501(6)$	0.72
H2	0.4608	0.1966	0.6298	0.060^{*}	0.72
C3	$0.6292(14)$	$0.2782(3)$	$0.5378(4)$	$0.0501(6)$	0.72
H3	0.6869	0.2451	0.4853	0.060^{*}	0.72
C4	$0.6020(12)$	$0.4012(3)$	$0.6012(3)$	$0.0501(6)$	0.72
H4	0.6453	0.4528	0.5937	0.060^{*}	0.72
C5	$0.4562(16)$	$0.3764(4)$	$0.6909(5)$	$0.0501(6)$	0.72
H5	0.3920	0.4107	0.7412	0.060^{*}	0.72
N1'	$0.704(3)$	$0.4342(5)$	$0.5481(7)$	$0.060(3)$	0.28
H1'1	0.7695	0.4343	0.4855	0.072^{*}	0.28
H1'2	0.6962	0.4761	0.5824	0.072^{*}	0.28
N2'	$0.400(2)$	$0.2381(5)$	$0.6940(6)$	$0.049(2)$	0.28
C1'	$0.614(3)$	$0.3697(5)$	$0.5917(8)$	$0.0483(15)$	0.28
C2'	$0.619(4)$	$0.3023(5)$	$0.5432(10)$	$0.0483(15)$	0.28
H2'	0.6893	0.2985	0.4756	0.058^{*}	0.28
C3'	$0.517(4)$	$0.2379(6)$	$0.5971(8)$	$0.0483(15)$	0.28
H3'	0.5299	0.1912	0.5635	0.058^{*}	0.28
C4'	$0.377(3)$	$0.3078(5)$	$0.7366(9)$	$0.0483(15)$	0.28
H4'	0.2683	0.3122	0.7986	0.058^{*}	0.28
C5'	$0.507(4)$	$0.3743(10)$	$0.6929(12)$	$0.0483(15)$	0.28
H5'	0.5207	0.4197	0.7301	0.058^{*}	0.28

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0294(3)$	$0.0381(3)$	$0.0263(2)$	$0.0004(2)$	$0.00499(18)$	$0.00265(19)$
Cl1	$0.0426(4)$	$0.0783(5)$	$0.0402(3)$	$-0.0008(3)$	$0.0075(3)$	$-0.0189(3)$
C12	$0.0326(3)$	$0.0375(3)$	$0.0455(3)$	$0.0002(2)$	$0.0071(2)$	$-0.0063(2)$
O1	$0.0335(9)$	$0.0706(13)$	$0.0317(9)$	$0.0022(9)$	$0.0050(7)$	$0.0172(8)$
N1	$0.086(3)$	$0.061(2)$	$0.0471(19)$	$-0.003(2)$	$0.0207(19)$	$0.0011(17)$
N2	$0.051(2)$	$0.078(3)$	$0.0413(19)$	$0.0024(19)$	$0.0022(16)$	$0.0057(18)$

sup-4

supplementary materials

C1	$0.0557(14)$	$0.0510(11)$	$0.0435(11)$	$0.0032(12)$	$0.0032(10)$	$-0.0060(10)$
C2	$0.0557(14)$	$0.0510(11)$	$0.0435(11)$	$0.0032(12)$	$0.0032(10)$	$-0.0060(10)$
C3	$0.0557(14)$	$0.0510(11)$	$0.0435(11)$	$0.0032(12)$	$0.0032(10)$	$-0.0060(10)$
C4	$0.0557(14)$	$0.0510(11)$	$0.0435(11)$	$0.0032(12)$	$0.0032(10)$	$-0.0060(10)$
C5	$0.0557(14)$	$0.0510(11)$	$0.0435(11)$	$0.0032(12)$	$0.0032(10)$	$-0.0060(10)$
N1'	$0.094(8)$	$0.049(5)$	$0.038(4)$	$-0.017(5)$	$0.002(5)$	$-0.003(4)$
N2'	$0.052(5)$	$0.050(5)$	$0.045(5)$	$0.000(4)$	$0.005(4)$	$-0.004(4)$
C1 $^{\prime}$	$0.052(3)$	$0.040(3)$	$0.052(3)$	$0.008(2)$	$-0.002(3)$	$-0.018(3)$
C2 $^{\prime}$	$0.052(3)$	$0.040(3)$	$0.052(3)$	$0.008(2)$	$-0.002(3)$	$-0.018(3)$
C3' $^{\prime}$	$0.052(3)$	$0.040(3)$	$0.052(3)$	$0.008(2)$	$-0.002(3)$	$-0.018(3)$
C4	$0.052(3)$	$0.040(3)$	$0.052(3)$	$0.008(2)$	$-0.002(3)$	$-0.018(3)$
C5'	$0.052(3)$	$0.040(3)$	$0.052(3)$	$0.008(2)$	$-0.002(3)$	$-0.018(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mn} 1-\mathrm{Ol}{ }^{\text {i }}$	2.1383 (17)
Mn1-O1	2.1383 (17)
$\mathrm{Mn} 1-\mathrm{Cl2}{ }^{\text {ii }}$	2.6117 (8)
$\mathrm{Mn} 1-\mathrm{Cl} 2{ }^{\text {iii }}$	2.6117 (8)
$\mathrm{Mn} 1-\mathrm{Cl} 2$	2.6173 (8)
$\mathrm{Mn} 1-\mathrm{Cl}^{\text {i }}$	2.6173 (8)
$\mathrm{Cl} 2-\mathrm{Mn} 1^{\text {iv }}$	2.6117 (8)
O1-HW1	0.8654
O1-HW2	0.7285
N1-C1	1.332 (5)
N1-H1A	0.8600
N1-H1B	0.8600
N2-C4	1.348 (5)
N2-C3	1.351 (6)
C1-C2	1.392 (6)
C1-C5	1.405 (8)
C2-C3	1.359 (6)
C2-H2	0.9300
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	180.000 (1)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Mnl}-\mathrm{Cl}^{\text {ii }}$	90.13 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Cl}^{\text {ii }}$	89.87 (6)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{Cl} 2^{\text {iii }}$	89.87 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Cl} 2{ }^{\text {iii }}$	90.13 (6)
$\mathrm{Cl2}{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{Cl2} 2{ }^{\text {iii }}$	180.0
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl} 2$	89.37 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Cl} 2$	90.63 (6)
$\mathrm{Cl} 2{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{Cl} 2$	97.99 (3)
$\mathrm{Cl} 2{ }^{\text {iiii}}-\mathrm{Mn} 1-\mathrm{Cl2}$	82.01 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl} 2^{\mathrm{i}}$	90.63 (6)
$\mathrm{O} 1-\mathrm{Mnl}-\mathrm{Cl}^{\text {i }}$	89.37 (6)

C3-H3	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	1.389 (7)
C4-H4	0.9300
C5-H5	0.9300
N1'- Cl^{\prime}	1.323 (11)
N1'-H1'1	0.8600
N1'-H1'2	0.8600
N2'-C4'	1.348 (10)
N2'-C3'	1.353 (10)
C1'-C2'	1.339 (11)
C1'- ${ }^{\prime} 5^{\prime}$	1.393 (13)
C2'-C3'	1.400 (12)
C2'-H2'	0.9300
C3'-H3'	0.9300
C4'- ${ }^{\prime} 5^{\prime}$	1.408 (13)
C4'- ${ }^{\prime} 4^{\prime}$	0.9300
C5'-H5'	0.9300
N2-C3-C2	123.2 (4)
N2-C3-H3	118.4
C2-C3-H3	118.4
N2-C4-C5	122.6 (5)
N2-C4-H4	118.7
C5-C4-H4	118.7
C4-C5-C1	117.8 (6)
C4-C5-H5	121.1
C1-C5-H5	121.1
C1'-N1'- ${ }^{\prime} 1^{\prime} 1$	120.0
C1'-N1'- ${ }^{\prime}{ }^{\prime}{ }^{\prime} 2$	120.0
H1'1-N1'-H1'2	120.0

supplementary materials

$\mathrm{Cl2} 2{ }^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{Cl}^{2}{ }^{\text {i }}$	82.01 (3)	C4'-N2'-C3'	114.4 (10)
$\mathrm{Cl} 2{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{Cl} 2^{\text {i }}$	97.99 (3)	$\mathrm{N} 1^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$	123.4 (12)
$\mathrm{Cl} 2-\mathrm{Mn} 1-\mathrm{Cl}^{2}$	180.00 (2)	N1'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 5{ }^{\prime}$	116.6 (10)
$\mathrm{Mn} 1{ }^{\text {iv }}-\mathrm{Cl} 2-\mathrm{Mn} 1$	97.99 (3)	C2'-C1'-C5'	120.0 (13)
Mn1-O1-HW1	126.0	C1'-C2'- ${ }^{\prime} 3^{\prime}$	118.3 (12)
$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{HW} 2$	124.3	$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	120.9
HW1-O1-HW2	107.3	C3'-C2'-H2'	120.9
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0	N2'-C3'-C2'	125.2 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0	N2'-C3'-H3'	117.4
H1A-N1-H1B	120.0	C2'-C3'-H3'	117.4
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	118.2 (4)	N2'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5^{\prime}$	123.9 (13)
N1-C1-C2	122.3 (5)	N2'-C4'- ${ }^{\prime} 4^{\prime}$	118.0
N1-C1-C5	118.4 (5)	C5'- ${ }^{\prime} 4^{\prime}-\mathrm{H} 4{ }^{\prime}$	118.0
C2-C1-C5	119.3 (5)	C1'-C5'-C4'	117.5 (14)
C3-C2-C1	118.8 (5)	C1'-C5'-H5'	121.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.6	C4'- \mathbf{C}^{\prime} '- ${ }^{\text {H }}$	121.3
C1-C2-H2	120.6		

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x+1, y, z$; (iii) $-x,-y+1,-z+2$; (iv) $x-1, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	${ }^{\cdots} \cdots$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{HW} 1 \cdots \mathrm{Cl1}{ }^{\text {v }}$	0.87	2.27	3.090 (2)	158
$\mathrm{O} 1-\mathrm{HW} 2 \cdots \mathrm{Cl1}{ }^{\text {vi }}$	0.73	2.39	3.082 (2)	159
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl1}$	0.86	2.41	3.264 (4)	172
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 2$	0.86	2.57	3.415 (4)	169
$\mathrm{N} 1{ }^{\prime}-\mathrm{H} 1{ }^{\prime} 1 \cdots \mathrm{Cl1}{ }^{\text {vii }}$	0.86	2.47	3.299 (10)	163
$\mathrm{N} 1^{\prime}-\mathrm{H}^{\prime} 2 \cdots \mathrm{Cl} 1^{\text {v }}$	0.86	2.58	3.386 (9)	156

Symmetry codes: (v) $-x+1, y+1 / 2,-z+3 / 2$; (vi) $-x, y+1 / 2,-z+3 / 2$; (vii) $x+1,-y+1 / 2, z-1 / 2$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

